• Log In
  • Sign Up
    • I cannot fully articulate the process of disposal as well as the authorities on the subject. I maintain a topical following of the stationary battery industry as it directly correlates and integrates with the DC power products of my company but I'm not a battery professional.

      That said; I'll quote another one of the exhibit papers from that conference that summarized the comparisons/contrasts between Li-Ion and LA batteries.

      If you want a full PDF of the presentation, I'd be happy to email a copy.


      Currently, lithium-ion batteries are generally recycled like consumer and cellular phone batteries. The major focus during the recycling process is the conductive electrode material (copper) and cell container (steel), as well as the active material (nickel and cobalt). Cobalt, like nickel and lead are mainly driven by the material prices for those metals when it comes to recycling. Lithium, however, drops mostly as a slag and is added at best case as a concrete additive hardener for cement or is processed in the glass industry. Realistically, a traditional recycling for the lithium-ion battery industry does not exist. Therefore, in the case of lithium recycling, it can’t be spoken about as a closed raw-material recirculation. The recycling process itself (metallurgical or electro-chemical) is not cost neutral and the cost cannot be fully covered by the recovered materials from the lithium-ion cells.

      Due to the ambitious plans of the automobile industry for electric mobility (BEV, PHEV), we should not lose sight of the fact that the lithium raw material is the most important raw material for future demand. In view of the chronicled uncertainty of lithium supply and the lack of optimized recycling procedures, energy storage cases above 1 kWh may remain a challenge for the future. What is needed is to develop new recycling procedures (e.g., wet-chemical procedures) in order to secure the future of lithium based energy storage.

      Further, it is very challenging to define one single basis for the recycling process due to the different cell chemistries of lithium-ion cells. In each case an individual solution has to be agreed upon between the customer and recycling partner (see Figure 10) to find a reasonable recycling process that focuses on the materials requirements while at the end reduces the price for the processing."